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Abstract

We continued development of physics-based models that explain the occurrence and characteristics
of slow slip events (SSE) and are consistent with geodetic and seismic observations of Episodic
Tremor and Slip (ETS) in the Pacific Northwest. In previous reports we described physics based
models of SSE based on rate-state friction and dilatancy strengthening, found depth distributions
of mechanical properties and pore-pressure that are consistent with the magnitude and depth
extent of SSE, developed efficient algorithms for 2D and 3D quasi-dynamic boundary element
modeling, and inverted for shear stress rates on the megathrust. These results showed that the
shear stress rates on within the gap must decrease with time to explain the decadal-averaged
deformation rates (Bruhat and Segall , 2016).

In northern Cascadia, kinematic inversions of GPS and tide-gauge/leveling data display an
unresolved “gap” between the down-dip limit of the locked megathrust and the top of the ETS zone.
Inversions of GPS and tide gauge/leveling data for shear stress rates acting on the megathrust
found that a relatively deep locked zone with steep slip rate gradient at its base is required to fit the
data (Bruhat and Segall , 2016, and report for award G14AP00038). Previous studies assumed the
depth distribution of interseismic slip rate to be time invariant; however, steep slip rate gradients
could also result from the up-dip propagation of slip into the locked region. During this reporting
period, we investigated models where interseismic slip penetrates up-dip into the locked region,
over time scales that are long compared to ETS recurrence times.

The ETS zone and gap region is modeled as a quasi-static crack driven by plate motion at
the fixed down dip limit of the ETS region. Following classical crack models of faults, we present
a simple model that allows crack growth over time, and derive analytical expressions for stress
drop within the crack, slip and slip rate along the fault. It proves convenient to expand any non-
singular slip rate distribution in a combination of Chebyshev polynomials. The inverse problem is
severely under determined, as are all geodetic inversions, however the new approach allows us to
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test particular cases, such as, solutions that provide bounds on the possible up dip propagation
rate, or solutions that optimize inferred characteristics of the slip and stress distributions. When
applied to observed deformation rates in Cascadia, best fitting models reveal that a very slow up
dip propagation is consistent with the data and that the gap seems to act as a “cohesive region”.
A paper describing this work is now in revision at Geophysical Journal International.

1 Report

Crack models for penetrating creep

Like most kinematic inversions of geodetic surface rates, Bruhat and Segall (2016) assumed the
locking depth, as well as the depth distribution of interseismic fault slip rate, to be time invariant.
However, steep gradients in interseismic slip rates icould also result from the up dip propagation
of slip into the locked region. Consider the interseismic slip distribution as a crack (not necessarily
of constant stress) of length a driven from below by steady creep at long-term rate v∞. Slip is
defined in terms of the deep displacement v∞t, and a depth dependent function f(z, t):

s(z, t) = f(z, t)v∞t. (1)

The instantaneous slip-rate is

ds

dt
(z, t) = f(z, t)v∞ + v∞t

∂f

∂t
= f(z, t)v∞ + v∞t

∂f

∂a

∂a

∂t
. (2)

Only if the shape function f(z, t) is time invariant is the slip-rate also time invariant, ds/dt =
f(z)v∞. More generally, propagation of the creeping zone, ∂a/∂t, leads to an additional term in
the slip-rate, which has been neglecting in kinematic slip-rate inversions.

We derive a model for deep interseismic creep as a long-term quasi-static crack driven by steady
down-dip plate motion. Following classical crack models of faults, we present a simple model that
allows crack growth over time, and derive analytical expressions for stress drop within the crack,
slip and slip rate along the fault. Consider a 1D crack of length a, extending vertically from
the free surface and loaded at constant long-term rate v∞ at depth. In a full space, the relation
between the Burger’s vector distribution B(ξ) ≡ ∂s/∂ξ, where s is fault slip, and the stress drop
within the crack ∆τ is

B(ξ) = − 2

µπ

∫ 1

−1

∆τ(u)
√

1− u2

(ξ − u)
√

1− ξ2
du+

2A

a
√

1− ξ2
(3)

(Bilby and Eshelby , 1968), where A is a constant proportional to the net dislocation, and we define
a normalized distance scale by ξ = 1− 2z/a. Following Bilby and Eshelby (1968), the integration
for B(ξ) can be conveniently performed by decomposing the stress drop in Chebyshev polynomials
of the first kind Ti

∆τ(u) = µ
∞∑
n=0

c̃iTi(u). (4)

Solving eq.(3) for a crack with finite stress at the crack tip (e.g., zero stress intensity, KII = 0)
and driven by steady displacement v∞t yields

∆τ(ξ, t) = µ
v∞t

aπ
ξ + µ

∞∑
i=2

c̃iTi(ξ) (5)

B(ξ, t) =
2v∞t

aπ

√
1− ξ2 + 2

√
1− ξ2

∞∑
i=2

c̃iUi−1(ξ), (6)
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Figure 1: Slip rate, cumulative slip, stress τ - τ∞ = −∆τ , and stress rate profiles at different times for a
crack propagating upward at 40 m/year. These profiles are derived at t = 150 years for a crack driven by
constant slip rate below z = 25 km, and all i > 2, c̃i = 0 and ∂c̃i/∂t = 0. Slip-rate is fixed to geologic rate
below z = 25 km.

where Ui are Chebyshev polynomials of the second kind. Integrating the Burger’s vector distribu-
tion, to obtain the slip s(ξ, t) yields

s(ξ, t) =
v∞t

π
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2

]
+
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]
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Taking the total derivative of s(ξ, t) to get slip-rate, we find

ds

dt
(ξ, t) = v∞g +

a

2
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where
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Note that using (8) one can expand any non-singular slip rate distribution in a combination of
Chebyshev polynomials, with i > 2. Figure 1 displays slip rate, cumulative slip, stress drop ∆τ ,
and stress-rate profiles at different times for a crack propagating upward at 40 m/year, when we
restrict analysis to the simplest case where for all i > 2, c̃i = 0 and ∂c̃i/∂t = 0. For an immobile
crack, ȧ = 0, the shape of slip rate distribution is the same as the slip profile. Allowing the crack
to grow pushes the locked-creeping transition upward from 17 km to 9 km in 150 years. Over time,
the slip rate profile also steepens due to the increasing contribution of the propagation term in the
slip rate equation. Figure 1 also shows that, while the transition from locked to creeping fault may
be abrupt there can still be significant slip deficit below this point as seen in the cumulative slip
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Figure 2: Best fitting model from the inversion of interseismic rates in Northern Cascadia, where the deep
creeping crack migrates up dip, and all ci and dci/dt = 0 for i > 1. Left: Corresponding slip rate and
cumulative slip profiles. Center and right: Observed and predicted rates.

plots. This has important consequences for the slip deficit along the plate boundary, which, in the
conventional framework, is solely defined by the time integral of the static slip rate distribution.

Application to Northern Cascadia

Observations of deformation rates in the Olympic Peninsula - southern Vancouver Island region
include (1) velocities obtained from GPS measurements; and (2) uplift rates, determined from
tide-gauge and leveling measurements. We use daily GPS positions at 51 stations from 2000 to
mid 2015, from which we compute horizontal velocities averaged over numerous SSEs. We also em-
ploy decadal-averaged uplift rates from tide gauges and leveling surveys in northwest Washington
from Krogstad et al. (2016), which we correct for postglacial rebound. Although Bruhat and Segall
(2016) assumed the long-term rates to be statistically independent, spatial correlations are well
known in geodetic data. We empirically estimate the correlations in the velocities to populate the
full covariance matrix. Large correlation lengths in the horizontal GPS measurements, compared
to those in the uplift rates, are inferred, which naturally decreases the weight of the GPS data in
later inversions.

Accounting for penetrating creep
We apply the model for a non-singular quasi-static crack derived in the previous section to the
long-term deformation rates observed in northern Cascadia. As mentioned earlier, this problem is
under-determined. We thus consider end-member cases to determine the classes of models which
are consistent with long-term deformation in Cascadia. Using equation (8), ds/dt is uniquely
specified by: the crack length a, the loading time t, the propagation rate ȧ, the coefficients of
the Chebyshev polynomials ci and their time derivatives dci/dt. We employ Markov Chain Monte
Carlo (MCMC) methods for inverting the deformations rates to enable the construction of posterior
distributions.

Figure 2 displays the best fit for the simplest case where for all i > 1, ci = 0 and dci/dt = 0.
This simple model fits the deformation rates well, in particular the uplift rates. The inferred lock-
ing depth is 21 km, and the propagation speed is 33.4 m/yr along the fault. The inferred slip rate
profile steepens rapidly in the gap. By contrast, the slip profile shows a smooth transition, leading
to a very significant cumulative deep slip deficit. Posterior distributions of the up dip velocity ȧ
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range rather uniformly between 30 and 120 m/year along the fault, i.e between 4 and 17 m/year
in depth (assuming the fault dip is 8 degrees). As more ci terms are added in the inversions, the
up-dip propagation speed decreases to between 30 and 50 m/year along fault. These are extremely
slow velocities, yet still critical to fit the data. Admissible locking depths vary from 19 to 23 km.

Stress and stress profiles that include free-surface effects
The equations relating stress drop ∆τ and the Burger’s vector distribution B derived in the first
section are only strictly valid in a full space. Considering the influence of the free surface results
in an additional term that prohibits an analytical solution. However, the inversions for slip rates
of course use Green’s functions that take into consideration the free surface. We use the inverted
slip-rate distributions to compute shear stress and shear stress rate on the fault through elastic
Green’s functions that do account for the free surface. The advantage of the Chebyshev expansion
is that it allows us to parameterize completely general, non singular slip-rate distributions, because
the free-surface terms are non-singular, even though the full space relationship between stress and
slip is incomplete.

Figure 3: Best fitting model from the inversion of interseis-
mic rates in Northern Cascadia using equations (8), where
the deep creeping crack migrates up dip, and all dci/dt = 0.
The Chebyshev expansion is done up to N = 4 and stress
rate is constrained to be zero in the ETS region. Left: Cor-
responding slip rate, cumulative slip, stress and stress rate
profiles. Right: Observed and predicted rates.

We previously showed that forward
models with rate and state dependent fric-
tion and dilatancy suggested that the net
change in shear stress within the ETS
zone is nearly zero; stress accumulates be-
tween SSEs, but then is relaxed during
SSE (Bruhat and Segall , 2016). We now
explore whether inversions can satisfy this
observation by refining the inversion to
also minimize shear stress rates within the
ETS region.

We inverted for the locking depth, ȧ,
and ci, through a MCMC procedure. We
assume again that the derivatives of the
ci are zeros. Solutions that respect the
stress rate constraint are found for N ≥ 4.
The best fit when N = 4 for slip and
stress rates is shown in Fig. 3, in which the
locking depth is found to be 21.9 km and
the propagation speed at 41.3 m/yr. The
shapes of the slip and stress distributions
are very similar to the best fit obtained
in the previous inversion. Stress rates are
negative in the gap, while nearly zero as
constrained, in the ETS region. Stress
is maximum at the crack tip, slowly de-
creases within the crack, reaching a stress
drop of 1 MPa at the bottom of the ETS
region. In this solution, the gap acts as
a “cohesive” region, i.e. a region where
stress reduces within the crack. Posterior
distributions for the different parameters
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yield that admissible up dip velocities concentrated between 20 and 60 m/year along the fault. As
usual, locking depths varies from 19 to 23 km.

Our data driven results provide a new class of solutions, where the locking depth migrates up
dip with time. Best fitting models reveal that a very slow up dip propagation, between 30 and
120 m/yr along fault is needed to fit the data and that the gap seems to act as a cohesive region.
The up dip propagation provides a solid explanation for the steep slip rate gradient at the base of
the locked zone and the negative shear stress rates inferred in without requiring temporal changes
of the fault strength suggested in Bruhat and Segall (2016) and the previous reports.

The model we describe in this report for provides a simple method for building slip and slip-
rate distributions with non-singular stresses. It also establishes a bridge between purely kinematic
inversions to fully physics-based models. Its simplicity allows for inversions of physical charac-
teristics of the fault interface, which are often too computationally expensive when considering
quasi-dynamic or fully dynamic simulations of earthquake cycles. On the other hand, the proposed
model can be used as a guide, or as a first step before more comprehensive numerical simulations.
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